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We study the problem of polymer adsorption in a good solvent when the con- 
tainer of the polymer-solvent system is taken to be a member of the Sierpinski 
gasket (SG) family of fractals. Members of the SG family are enumerated by an 
integer b (2<~b~< or), and it is assumed that one side of each SG fi'actal is an 
impenetrable adsorbing boundary. We calculate the critical exponents ),j, ?l J, 
and ),~, which, within the self-avoiding walk model (SAW) of tile polymer chain, 
are associated with the numbers of all possible SAWs with one, both, and 
no ends anchored to the adsorbing impenetrable boundary, respectively. By 
applying the exact renormalization group (RG) method for 2 ~< b ~< 8 and the 
Monte Carlo renormalization group (MCRG) method for a sequence of fractals 
with 2 ~<b ~<80, we obtain specific values for these exponents. The obtained 
results show that all three critical exponents y~, ~'ll, and y.~, in both the bulk 
phase and crossover region are monotonically increasing functions with b. We 
discuss their mutual relations, their relations with other critical exponents per- 
tinent to SAWs on the SG fractals, and their possible asymptotic behavior in 
the limit b ~ or, when the fractal dimension of the SG fractals approaches the 
Euclidean value 2. 

KEY WORDS:  Polymer adsorption: fractals; exact and Monte Carlo renor- 
malization group. 

1. I N T R O D U C T I O N  

Polymer adsorption on a rigid impenetrable adsorbent has been widely 
studied because of its practical and theoretical importance. The statistical 
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mechanics approach to this problem has been successfully applied, in par- 
ticular, in the case of a good solvent that contains only one linear polymer 
interacting with the impenetrable wall (boundary). More specifically, 
because of the successful recognition of the polymer adsorption problem as 
a surface critical phenomenon, it has been possible to express various 
polymer quantities in terms of power laws with the concomitant critical 
exponents. Motivated by the relevant work done in the case of Euclidean 
lattices, several studies have appeared recently 11-6~ in which it has been 
assumed that the adsorbate is immersed in a fractal container. In these 
studies, almost exclusively, only two critical exponents have been studied, 
that is, the end-to-end distance critical exponent v and the crossover expo- 
nent ~b. However, a thorough picture of the adsorption problem requires 
knowledge of critical exponents that describe numbers of polymer con- 
figurations grouped according to the different ways of anchoring to the 
adsorbing boundary. In terms of the self-avoiding random walk (SAW) 
model of linear polymers, these exponents are defined by the following for- 
mulas for numbers of possible different configurations averaged over the 
number of sites on the impenetrable boundary: 

CI(N, T)~pNN yt-I, Cll(N, T)~ItNN ~''l-I, C~.(N, T)~ltNN ~'~-I 
(1) 

which are assumed to be valid for a large number N of steps (monomers). 
Here C,, Clt,  and C~. are the numbers of all possible SAWs with one, both, 
and no ends anchored to the boundary, respectively, while yl, Yl~, and y.,. 
are the respective critical exponents. It is assumed that the numbers Cj, 
C~,  and C,. are functions of temperature T through the connectivity con- 
stant/t .  It turns out that/~ is a continuous function of T (see, for instance, 
ref. 1 ), so that in the high-temperature region, that is, in the bulk phase,/z 
is constant up to the crossover temperature Ta, whereas for T <  Ta (in the 
adsorbed phase) it is a monotonically increasing function. 

In this paper we calculate the critical exponents y~, Y I~, and y.,. for the 
SAW model of a polymer chain situated on fractals that belong to the Sier- 
pinski gasket (SG) family. Each member of the SG family is labeled by an 
integer b (2 ~< b -%< co ), and it is assumed that one side of each SG fractal is 
an impenetrable adsorbing wall. The exponents )q, y~,  and y.,. have been 
known ~2~ only in the case b = 2 for the bulk phase and crossover region. In 
this work, we calculate these critical exponents by applying the exact renor- 
malization group (RG) method for 2 ~ b ~< 8 and the Monte Carlo renor- 
malization group (MCRG) method for a sequence of fractals with 
2 ~< b ~< 80. The obtained results show that all three critical exponents (in 
both the bulk phase and crossover region) are monotonically increasing 
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functions with b, which should be associated with the fact ~7"8~ that the criti- 
cal exponent y (which determines the asymptotic behavior of the total 
number of distinct SAWs) for the SG fractals is also a monotonically 
increasing function of b, with the specific behavior 19~ in the asymptotic 
region b ~ oo. 

This paper is organized as follows. In Section 2 we present the general 
framework of the RG method for studying SAWs on the SG fractals in a 
way that should make the method transparent for exact calculations as well 
as for the Monte Carlo (MC) calculations of the SAW critical exponents. 
In Section 3 we present the exact results for the critical exponents y~, Y~t, 
and y.,. for 2~<b~<8 and the MCRG results for a sequence of the SG 
fractals up to b ~< 80. In the same section we discuss the obtained results 
and their relevance to the current knowledge of statistics of SAWs on 
fractals. 

2. F R A M E W O R K  OF THE RENORMALIZATION GROUP 
APPROACH 

In this section we expound on the RG approach of calculating the 
critical exponents y~, Y1~, and y.,. for the SAW adsorption problem on the 
SG family of fractals. These fractals have been studied in numerous papers 
(see, for instance, ref. 7), and consequently we shall give here only a brief 
summary of their basic properties. We start by recalling the fact that each 
member of the SG fractal family can be constructed in stages. At the initial 
stage (r = 1) of the construction there is an equilateral triangle (generator) 
that contains b 2 identical smaller triangles of unit side length, out of which 
only the upper oriented ones are physically present. The subsequent fractal 
stages are constructed self-similarly, so that the complete fractal is obtained 
in the limit r ~  co. In the case under study, it is assumed that one side of 
each fractal is an impenetrable attractive wall, and, for the sake of con- 
venience, we assume that it is the base of the corresponding triangle. Thus 
it follows that the fractal dimension of the adsorbing wall (surface) is 
d., = 1, whereas the fractal dimension of the complete SG fractal is known 
to be dr= ln[b(b + 1 )/2]/ln b. 

In order to study influence of the adsorbing wall on the polymer 
statistics, we kntroduce the two Boltzmann factors w = e ..... /r  and t - - e  -~'/r, 
where e,,, is the energy of a monomer lying on the adsorbing wall and e, is 
the energy of a monomer that appears in the layer adjacent to the wall. 
Here we set the Boltzmann constant k~ equal to unity. We should also set 
e, > 0 so as to prevent the tendency of a polymer chain toward being 
always adsorbed? ~1 In the parlance appropriate for the SAW model, we 
assign the weight x to each step in the bulk (away from the wall), the 
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weight wx to each step on the wall, and the weight tx to each step in the 
layer adjacent to the wall. 

The weighting factors defined in the foregong paragraph allow us to 
introduce the requisite generating functions together with their assumed 
asymptotic forms: 

N 
Cl(x, T) = x N ~ CI(N, M, L) wMt L 

N = I  M , L ~ I  

= ~ CI(N, T) xN'.~(1 --Xp) -~'1 (2) 
N = I  

N 
Cll(x, T) = x N ~ CII(N, M, L) wMt L 

N = I  M , L = I  

= ~" C I I ( N ,  T ) x N ~ ( 1  --Xlt) -~'H (3) 
N = I  

N 

C,.(x,T)= ~ x N ~ CAN, M,L)  wMt z 
N = I  M . L ~ I  

= ~ C~,(N, T)xN..~(1--X/t) -~'~ (4) 
N = I  

where CI(N, M, L) [ Ci j(N, M, L)] represents the number of N-step SAWs 
with M steps on the surface and L steps in the layer adjacent to the wall 
provided one (both) end(st of the walk is (are) anchored to the wall, while 
CAN, M, L) is the number of SAWs with no ends anchored to the wall. 
The power laws at the ends of the above equations represent leading 
singular behaviors of the corresponding generating functions, which are 
valid when x approaches x0 = lip(T) from below. 

To calculate the critical exponents, we have found that it is helpful to 
define, for an SG triangle at the rth stage of construction, 20 restricted par- 
tition functions ~2~ (see Fig. 1) that provide a complete description of the 
above generating functions. In other words, we can express each generating 
function in terms of the restricted partition functions. It is convenient to 
start with the generating function C~, which can be written in the form 

C,l(x, T)= b" (5) 
r = [  
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Fig. 1. Diagrams representing the 20 restricted partition functions for SAWs on an SG 
triangle at the r th  stage of construction. The solid circles denote ends of SAWs that  are 
anchored to the attractive boundary,  while the open circles are those ends that are somewhere 
in the bulk. 

with 

(r+ 1 )  - -  2 F,, - - f , A , + f 2 A , A 3 + f 3 A ~ + f 4 A , C 2 + f s A 3 C 2  

+ f6C~ + f7 D, + fsD4 + fgA, + floA3 + f , ,  C2 (6) 

where we have suppressed the superscript (r) on the right-hand side of the 
above relation. Here, the coefficients f~ are polynomials of B ~), B~ *), and 
B~ "). Similarly, the generating functions C,(x, T) and Cs(x, T) have the 
form 

F~r) 
C,(x, T) = C,l(X, T) + br , 

r = l  

C.,.(x, T ) =  ~ Fb~) (7) 
r = ,  

where F] "+') is a quadratic function of A It), A~ *), C Ir), and C~ ") and is 
linear in D'I3, D~ "1, and D(6 *), whereas Fir § is a quadratic function of A "), 
Air) A(4rl, CI,.~, C~,.), and c,(r~ and is linear in D (r~, n~r) and D(7 "), with the 2 ,  ~ 3  ' ~ 2 ,  

corresponding coefficients being polynomials of B ~), B~ "), and B~ r~. 

822/83/5-6-29 
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For arbitrary r, the self-similarity of the fractals under study implies 
the following recursion relations for the bulk restricted partition functions: 

B'=fb,  A '=a lA+a2C,  C '=c1A+c2C (8) 

where we have used the prime for the ( r +  1)th-order functions and no 
indices for the rth-order functions, while fb, ai, and cl are polynomials in 
B (whose explicit forms for 2 ~< b ~< 8 have been found~7~). Analogously, we 
find the additional recursion relations 

v', =Uv, ,  v~=Uv2 + gvs (9) 

B', = g, B~ + g~_B,B2 + g3B~_ 

B~ = g4Bl + gsB2 (10) 

CI = g6Ci + g7 A + gsC 

where v~, v2, and v3 are vector columns with components (A~, A3, C2), 
(A2, Aa, C3) , and (C1, A, C), respectively, and elements of matrices LJ and 
r162 as well as the coefficients g,., are polynomials of B Ir~, B~ "~, and BI2r( The 
remaining restricted partition functions D and D; (i = 1 ..... 7) satisfy similar 
recursion relations, but their explicit forms are somewhat more intricate, 
and, in addition, it turns out that they are not needed for the determination 
of the critical exponents. For this reason, we do not give them here. 

The preceding recursion relations comprise the RG transformations of 
the problem studied, and, in accord with the accepted physical picture of 
the interaction parameters, we assume the following initial conditions: 

B ~~ = x ,  B~ ~ = w x ,  B ~  I = tx 
(11) 

A ~~ C ~~ r176 ~ C~ ~ ~ 

which are pertinent to the unit SG triangle (r = 0). 
The numerical study of the recursion relations for B [given by (8)], 

B1, and B2 [given by (10)], with the respective initial conditions (11), 
shows that, for any fixed value of t < 1, there are three different tem- 
perature regions, ~*'2'5~ which we discuss separately, starting with the high- 
temperature region. 

(i) At high temperatures, that is, for w < w*(t), the critical fugacity is 
constant and equal to its bulk critical value x,. = 1//~. For all these values 
of temperature the bulk SAW fixed point is reached 

(B*, B*, B*)= (B*, 0, 0) (12) 



Polymer Adsorption on Fractal Lattices 1247 

The fraction of SAW steps in contact with the surface vanishes in this tem- 
perature region, so that the polymer is in the desorbed state. Linearization 
about this fixed point leads to only one relevant eigenvalue 

2 OB B=n* (13) 

which yields the value of the end-to-end distance critical exponent 
v = In b/ln 2. 

necessary to In order to calculate exponents y~, Yll, and Ys, it is 
investigate the singular behavior of the generating functions (5) and (7), 
which requires that we analyze the restricted partition functions (8)-(10) in 
the vicinity of the bulk fixed point (12). To this end, we choose r176 a small 
positive number e and a value of x sufficiently close to x,. so that 
x , . -  x ~ e ,~ 1. Then, for r < r o = ln[e/(x~ - x)] / ln  2 >> 1, we find 

B c') ~ B*,  

Ar (q)tl) ~ 

C ' ~ ~  2'i, 

where, on the grounds 
matrix 17~ 

Br rl ~ 0, B 2~rl ~q,- 

A~f~~2~,_ Al"~-, ~2 ' i ,  AI"~ ~ c o n s t , 3  ~ 
(14) 

CO( ~~0,~ ~2r r ~ 0, C ~'~3 ~ (q-'21 ) ~ 

of Eq.(8), 2L is the relevant eigenvalue of the 

and 

al(B*) az(B*)" ~ 
cl(B*) c2(B*)J (15) 

q = g s ( B * , O , O ) < l ,  2,_ = (fJ)ll (B*, 0, 0) < 21 (16) 

For  r >  r o, the partition functions rapidly appraoch some constants, so, 
analyzing the singular behavior of the generating functions (5) and (7) in 
accord with their assumed asymptotic forms (2)-(4), we finally get 

In(2,22/b) ln(2_~/b) ln(2~/b) 
Yl ln2  ' Yli ln2  ' L,. ln2  (17) 

(ii) When the temperature is lowered, an adsorption transition 
occurs for w = w*(t). In that case xc(w* ) is still equal to its bulk value, but 
Eqs. (8) and (10) iterate toward a new fixed point 

(B*, B*, B * ) =  (B*, B*, B*) (18) 
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which corresponds to the "special" transition when a balance between the 
attractive polymer-surface potential and an effective "entropic" repulsion 
sets in. ( ~ ) 

The bulk restricted partition functions A, B, and C (see Fig. 1) behave 
in the same way as in the high-temperature region, while the leading 
singular behaviors of the surface restricted partition functions, in the 
vicinity of the special fixed point, are 

A~()~2~, A ~r) ,- C(r) ,. A ~ r )  3 ~ J ' 3 ,  _ ~ J ' 3 ,  _ ~ ' t ,  
(19) 

A " ) ~  ~';, C':)~ :,';, C,,)., ~~'; 

where ),3 is the largest eigenvalue of the matrix U, whose elements are 
evaluated at the symmetric fixed point (18). Using the same approach, we 
find 

ln(2,23/b) ln(2~/b) ln(2~/b) (2o) 
Y)-  In2 ' Y~ In2 ' Y~ ln2  

(iii) In the low-temperature region, that is, for w > w*(t), the critical 
fugacity xc(w) is a decreasing function of w, while the recursion relations 
(8) and (10) iterate toward the fixed point 

(8",  8~', 8~)  = (o, l, o) (21) 

which corresponds to an adsorbed polymer that displays features of a one- 
dimensional system, so that all the critical exponents are equal to the 
corresponding value of ),, i.e., y~ = y,, = y.,.= 1. 

3. RESULTS AND DISCUSSION 

To obtain specific values of the critical exponents ):1, Y,~, and y.,., one 
needs to know the eigenvalues 2, 2~, 2,, and 23. In previous studies, the 
exact values t2"7~ and the MCRG values tS'l~l for 2 and 21 have been found 
for 2 ~< b ~< 8 and for 2 ~< b ~ 80, respectively. An exact calculation of the 
remaining two eigenvalues, 22 and ),3, requires knowledge of the elements 
(which are polynomials) of the matrix I]. They can be calculated by 
enumerating the SAWs that are described by the restricted partition func- 
tions AI, A3, and C2 (see Fig. 1). We have found that this enumeration is 
feasible for 2 ~< b ~< 8. The obtained exact values for the critical exponents 
relevant to the bulk phase described by the fixed point (12) together with 
those relevant to the crossover region described by the fixed point (18) are 
given in Table I. 
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For a sequence of b >/9, the exact determination of elements of the 
matrix U hardly can be reached using present-day computers. However, to 
calculate 22 and 23 one does not need a complete knowledge of these poly- 
nomials (that is, one does not need to know all their coefficients). In fact, 
for obtaining 22, one needs only value of the polynomial (U)1~ at the fixed 
point (12), whereas to obtain 23 one needs values of all elements of the 
matrix IJ at the fixed point (18). On the other hand, the elements of the 
matrix I[1 can be conceived as grand partition functions of appropriate 
ensembles, and consequently within the MCRG method t8''2~ the requisite 
values of these polynomials can be determined directly. Details of the way 
to ascertain these values are quite similar to the way applied pre- 
viously 18"~2~ and we are not going to elaborate on it further. Our present 
MCRG findings for 2 ~< b-%< 80 are given in Table I together with the exact 
results for 2 ~< b ~< 8. Comparing the data given in the Table I and taking 
into account the known values c7'8~ for ),, one can conclude that, in the 
region of b studied, the following inequality is valid: )'~1 < )'1 < )'-This result 
is quite plausible since y is related to all possible SAWs, which certainly 
outnumber the SAWs with one or both ends anchored to the boundary, 
described by the power laws (1). Similarly, the generating function C~1 
describes SAWs with a stronger constraint than the constraint for SAWs 
described by the generating function C~ [ see ( 1 ) ], and consequently ), I, < )'1. 
One can also verify that data from Table I satisfy the scaling relation ~-'''3~ 

Ys = 2Yl - Yll = )~ + v(df- d,.) (22) 

Inspired by this piece of information verified for 2 ~< b ~< 80, one can 
look at the general formulas (17) and (20) for Yl, Y11, and ~.~ as well as at 
the formulas ~ for y and v, and thereby one can conclude that the scaling 
relation (22) stays valid for arbitrary b in both the bulk phase and the 
crossover region. 

For  the sake of a better assessment of the global behavior of the criti- 
cal exponents as functions of the scaling parameter b, we present the results 
in Fig. 2. Notice that both y~ and 9'~1, relevant to the bulk phase of the 
polymer system, are monotonically increasing functions of b, so that for 
b > 3  the exponent Yl is larger than the corresponding two-dimensional 
Euclidean value 1~4"~5~ y1=61/64, whereas Yll surpasses the Euclidean 
value 114"15J yll = - 3 / 1 6  for b > 2 .  In the case of the crossover region, 
described by the fixed point (18), y i and y i ~ are als0 monotonically increas- 
ing functions of b. The behavior of the critical exponent y.,. (whose values 
are the same in both the bulk phase and the crossover region) is similar to 
the behavior of Yl and y~,  that is, y~. is a monotonically increasing function 
of b, which, for b > 6, surpasses its Euclidean counterpar(  TM y~. = 67/32. 
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Fig. 2. The full lines represents the dependence of the critical exponents 71, ?lL, and y~ in the 
bulk phase (T> Ta) and the crossover region (T= Ta) as a function of l/b (2 ~< b ~< 80). The 
horizontal dotted lines correspond to the known two-dimensional Euclidean values 7t = 61/64 
and ?H= -3/16 for the bulk region (T> Ta) and )'s = 67/32 for both the bulk phase and the 
crossover region ( T~> Ta). 

At the end, one may pose the question about the possible asymptotic 
behavior of the critical exponents 7~, 7~1, and 7,. in the limit b ~ oo (when 
the SG fractal dimension approaches the Euclidean value 2). This question 
has been answered (9) for the critical exponents 7 and v (within the finite- 
size scaling approach), with the predictions 7--+ 133/32 and v--, 3/4 when 
b ~ ~ .  Combining these predictions with the scaling relation (22), one 
finds (-') that 7~, tends to 157/32 from below. As regards the other two critical 
exponents, that is, 7~ ad 711, their asymptotic behavior cannot be obtained 
in a similar indirect way, but it should be reached by making an inde- 
pendent finite-size scaling approach (in both the bulk phase and crossover 
region), which will be a matter for future study. 
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